Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Oral Biosci ; 66(1): 205-216, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072191

RESUMO

OBJECTIVES: Rab11(Rab11a and Rab11b) localizes primarily along recycling endosomes in cells and is involved in various intracellular trafficking processes, including membrane receptor recycling and secretion of exosomes or small extracellular vesicles (EVs). Although Rab11 is closely associated with the progression and metastasis of various cancer types, little is known about Rab11' role in head and neck squamous cell carcinoma (HNSCC). In this study, we investigated the roles of Rab11a and Rab11b in HNSCC. METHODS: The clinical significance of Rab11 expression in HNSCC was investigated using a public database and tissue microarray analysis. Stable cell lines with loss and gain of Rab11a or Rab11b were originally established to investigate their roles in the proliferative, migratory, and invasive capabilities of HNSCC cells. RESULTS: Database analysis revealed a significant association between Rab11b mRNA expression and a favorable patient survival rate in HNSCC. Tissue microarray analysis revealed that Rab11b expression was the highest in normal tissues and gradually decreased across the stages of HNSCC progression. Overexpression of Rab11a or Rab11b resulted in a decrease in epidermal growth factor receptor (EGFR), Epithelial cell adhesion molecule (EpCAM) exosome secretion, and the migratory and invasive potential of HNSCC cells. The knockdown of Rab11a or Rab11b increased EpCAM/CD9 exosome secretion in addition to the migratory and invasive potential of HNSCC cells. CONCLUSIONS: Rab11 suppresses HNSCC by regulating EGFR recycling and EpCAM exosome secretion in HNSCC cells. Our results indicate that Rab11b is a superior prognostic indicator of HNSCC and holds promise for developing novel therapeutic strategies.


Assuntos
Exossomos , Neoplasias de Cabeça e Pescoço , Humanos , Molécula de Adesão da Célula Epitelial/genética , Receptores ErbB/genética , Exossomos/genética , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
2.
Methods Mol Biol ; 2582: 39-57, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36370343

RESUMO

Cellular Communication Network (CCN) proteins are growth factors that play key roles in many pathophysiological events, including bone formation, wound healing, and cancer. CCN factors and fragments generated by metalloproteinases-dependent cleavage are often associated with extracellular matrix (ECM) or small extracellular vesicles (sEVs) such as exosomes or matrix-coated vesicles. We provide reliable methods and protocols for Western blotting to analyze CCN factors and fragments in cells, sEVs, and vesicle-free fractions.


Assuntos
Exossomos , Vesículas Extracelulares , Exossomos/metabolismo , Proteínas de Sinalização Intercelular CCN/metabolismo , Comunicação Celular , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Western Blotting
3.
Cell Biochem Funct ; 40(8): 838-855, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36111708

RESUMO

Rab11a, which ubiquitously localizes to early and recycling endosomes, is required for regulating the vesicular transport of cellular cargos. Interestingly, our previous study revealed that Rab11a served as a negative regulator of osteoclastogenesis by facilitating the lysosomal proteolysis of (1) colony-stimulating factor-1 (c-fms) receptor and (2) receptor activator of nuclear factor-κB (RANK) receptor, thereby resulting in inhibition of osteoclast (OC) differentiation, maturation, and bone-resorbing activity. However, the molecular mechanisms of how Rab11a negatively affected osteoclastogenesis were largely unknown. Heat shock protein (HSP90), including two isoforms HSP90α and HSP90ß, necessitates the stability, maturation, and activity of a broad range of its clients, and is essentially required for a vast array of signal transduction pathways in nonstressful conditions. Furthermore, cumulative evidence suggests that HSP90 is a vital element of the vesicular transport network. Indeed, our recent study revealed that HSP90, a novel effector protein of Rab11b, modulated Rab11b-mediated osteoclastogenesis. In this study, we also found that Rab11a interacted with both HSP90α and HSP90ß in OCs. Upon blockade of HSP90 ATPase activity by a specific inhibitor(17-allylamino-demethoxygeldanamycin), we showed that (1) the ATPase domain of HSP90 was a prerequisite for the interaction between HSP90 and Rab11a, and (2) the interaction of HSP90 to Rab11a sufficiently maintained the inhibitory effects of Rab11a on osteoclastogenesis. Altogether, our findings undoubtedly indicate a novel role of HSP90 in regulating Rab11a-mediated osteoclastogenesis.


Assuntos
Proteínas de Choque Térmico HSP90 , Osteoclastos , Proteínas rab de Ligação ao GTP , Humanos , Adenosina Trifosfatases/metabolismo , Diferenciação Celular , Endossomos , Proteínas de Choque Térmico HSP90/metabolismo , Osteoclastos/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Osteogênese , Proteínas rab de Ligação ao GTP/metabolismo
4.
Cell Biochem Funct ; 40(3): 263-277, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35285960

RESUMO

Accumulating evidence suggests that Rab GTPases representing the largest branch of Ras superfamily have recently emerged as the core factors for the regulation of osteoclastogenesis through modulating vesicular transport amongst specific subcellular compartments. Among these, Rab34 GTPase has been identified to be important for the post-Golgi secretory pathway and for phagocytosis; nevertheless, its specific role in osteoclastogenesis has been completely obscure. Here, upon the in vitro model of osteoclast formation derived from murine macrophages like RAW-D cells or bone marrow-derived macrophages, we reveal that Rab34 regulates osteoclastogenesis bidirectionally. More specifically, Rab34 serves as a negative regulator of osteoclast differentiation by promoting the lysosome-induced proteolysis of two osteoclastogenic surface receptors, c-fms and RANK, via the axis of early endosomes-late endosomes-lysosomes, leading to alleviate the transcriptional activity of two of the master regulator of osteoclast differentiation, c-fos and NFATc-1, eventually attenuating osteoclast differentiation and bone resorption. Besides, Rab34 plays a crucial role in modulating the secretory network of lysosome-related proteases including matrix metalloprotease 9 and Cathepsin K across the ruffled borders of osteoclasts, contributing to the regulation of bone resorption.


Assuntos
Reabsorção Óssea , Osteogênese , Animais , Reabsorção Óssea/metabolismo , Diferenciação Celular , Camundongos , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
5.
Int J Cardiovasc Imaging ; 38(8): 1881-1882, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37726518

RESUMO

We report a 5-year-old girl (13kg) was referred to our facility for cardiologic examination due to uncontrolled hypertension and significant heart failure. Chest radiography elevated cardiothoracic ratio of over 60% with rib notching and the absence of an aortic knob. Transthoracic echocardiography showed a dilated left ventricle with a reduced ejection fraction and significant stenosis of the descending aorta with a pressure gradient of 64 mm Hg. Computed tomography angiography confirmed the type of supradiaphragmatic middle aortic syndrome, with severe stenosis segment 75 mm of the descending aorta was visible around 20 mm above the diaphragm. The narrowest point was estimated to be 1.85 mm. In addition, the ascending aorta, aortic arch, and supra-cervical branches were all normal, as were the abdominal aorta and its major branches. Our patient underwent surgery, a 9.0 mm Dacron bypass was performed between the ascending and the terminal descending thoracic aorta. Extra-anatomical ascending-to-descending aortic bypass is a relatively safe and successful therapy option for supradiaphragmatic middle aortic syndrome.


Assuntos
Doenças da Aorta , Arterite de Takayasu , Feminino , Criança , Humanos , Pré-Escolar , Constrição Patológica , Valor Preditivo dos Testes , Doenças da Aorta/diagnóstico por imagem , Doenças da Aorta/cirurgia , Aorta Abdominal
6.
Biochim Biophys Acta Mol Cell Res ; 1868(10): 119096, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34242681

RESUMO

Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone that plays a pivotal role in folding, activating and assembling a variety of client proteins. In addition, HSP90 has recently emerged as a crucial regulator of vesicular transport of cellular proteins. In our previous study, we revealed Rab11b negatively regulated osteoclastogenesis by promoting the lysosomal proteolysis of c-fms and RANK surface receptors via the axis of early endosome-late endosome-lysosomes. In this study, using an in vitro model of osteoclasts differentiated from murine macrophage-like RAW-D cells, we revealed that Rab11b interacted with both HSP90 isoforms, HSP90 alpha (HSP90α) and HSP90 beta (HSP90ß), suggesting that Rab11b is an HSP90 client. Using at specific blocker for HSP90 ATPase activity, 17-allylamino-demethoxygeldanamycin (17-AAG), we found that the HSP90 ATPase domain is indispensable for maintaining the interaction between HSP90 and Rab11b in osteoclasts. Nonetheless, its ATPase activity is not required for regulating the turnover of endogenous Rab11b. Interestingly, blocking the interaction between HSP90 and Rab11b by either HSP90-targeting small interfering RNA (siHSP90) or 17-AAG abrogated the inhibitory effects of Rab11b on osteoclastogenesis by suppressing the Rab11b-mediated transport of c-fms and RANK surface receptors to lysosomes via the axis of early endosome-late endosome-lysosomes, alleviating the Rab11b-mediated proteolysis of these surface receptors in osteoclasts. Based on our observations, we propose a HSP90/Rab11b-mediated regulatory mechanism for osteoclastogenesis by directly modulating the c-fms and RANK surface receptors in osteoclasts, thereby contributing to the maintenance of bone homeostasis.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Camundongos , Osteogênese
7.
Cells ; 10(6)2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071980

RESUMO

Extracellular vesicles (EV) heterogeneity is a crucial issue in biology and medicine. In addition, tumor-associated macrophages are key components in cancer microenvironment and immunology. We developed a combination method of size exclusion chromatography and concentration filters (SEC-CF) and aimed to characterize different EV types by their size, cargo types, and functions. A human monocytic leukemia cell line THP-1 was differentiated to CD14-positive macrophage-like cells by stimulation with PMA (phorbol 12-myristate 13-acetate) but not M1 or M2 types. Using the SEC-CF method, the following five EV types were fractionated from the culture supernatant of macrophage-like cells: (i) rare large EVs (500-3000 nm) reminiscent of apoptosomes, (ii) EVs (100-500 nm) reminiscent of microvesicles (or microparticles), (iii) EVs (80-300 nm) containing CD9-positive large exosomes (EXO-L), (iv) EVs (20-200 nm) containing unidentified vesicles/particles, and (v) EVs (10-70 nm) containing CD63/HSP90-positive small exosomes (EXO-S) and particles. For a molecular transfer assay, we developed a THP-1-based stable cell line producinga GFP-fused palmitoylation signal (palmGFP) associated with the membrane. The THP1/palmGFP cells were differentiated into macrophages producing palmGFP-contained EVs. The macrophage/palmGFP-secreted EXO-S and EXO-L efficiently transferred the palmGFP to receiver human oral carcinoma cells (HSC-3/palmTomato), as compared to other EV types. In addition, the macrophage-secreted EXO-S and EXO-L significantly reduced the cell viability (ATP content) in oral carcinoma cells. Taken together, the SEC-CF method is useful for the purification of large and small exosomes with higher molecular transfer activities, enabling efficient molecular delivery to target cells.


Assuntos
Exossomos/metabolismo , Macrófagos/metabolismo , Neoplasias Bucais/metabolismo , Microambiente Tumoral/fisiologia , Diferenciação Celular/fisiologia , Vesículas Extracelulares/metabolismo , Humanos , Macrófagos Associados a Tumor/metabolismo
8.
Explor Target Antitumor Ther ; 2(3): 249-265, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36046435

RESUMO

Intracellular Ca2+ ions that are thought to be one of the most important second messengers for cellular signaling, have a substantial diversity of roles in regulating a plethora of fundamental cellular physiology such as gene expression, cell division, cell motility and apoptosis. It has been suggestive of the Ca2+ signaling-dependent cellular processes to be tightly regulated by the numerous types of Ca2+ channels, pumps, exchangers and sensing receptors. Consequently, dysregulated Ca2+ homeostasis leads to a series of events connected to elevated malignant phenotypes including uncontrolled proliferation, migration, invasion and metastasis, all of which are frequently observed in advanced stage lung cancer cells. The incidence of bone metastasis in patients with advanced stage lung cancer is estimated in a range of 30% to 40%, bringing about a significant negative impact on both morbidity and survival. This review dissects and summarizes the important roles of Ca2+ signaling transduction in contributing to lung cancer progression, and address the question: if and how Ca2+ signaling might have been engaged in metastatic lung cancer with bone metastasis, thereby potentially providing the multifaceted and promising solutions for therapeutic intervention.

9.
Int J Mol Sci ; 21(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302495

RESUMO

Rab11b, abundantly enriched in endocytic recycling compartments, is required for the establishment of the machinery of vesicle trafficking. Yet, no report has so far characterized the biological function of Rab11b in osteoclastogenesis. Using in vitro model of osteoclasts differentiated from murine macrophages like RAW-D cells or bone marrow-derived macrophages, we elucidated that Rab11b served as an inhibitory regulator of osteoclast differentiation sequentially via (i) abolishing surface abundance of RANK and c-Fms receptors; and (ii) attenuating nuclear factor of activated T-cells c1 (NFATc-1) upstream signaling cascades, following RANKL stimulation. Rab11b was localized in early and late endosomes, Golgi complex, and endoplasmic reticulum; moreover, its overexpression enlarged early and late endosomes. Upon inhibition of lysosomal function by a specific blocker, chloroquine (CLQ), we comprehensively clarified a novel function of lysosomes on mediating proteolytic degradation of c-Fms and RANK surface receptors, drastically ameliorated by Rab11b overexpression in RAW-D cell-derived osteoclasts. These findings highlight the key role of Rab11b as an inhibitor of osteoclastogenesis by directing the transport of c-Fms and RANK surface receptors to lysosomes for degradation via the axis of early endosomes-late endosomes-lysosomes, thereby contributing towards the systemic equilibrium of the bone resorption phase.


Assuntos
Osteoclastos/metabolismo , Osteogênese , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Proteólise , Proteínas rab de Ligação ao GTP/genética
10.
J Extracell Vesicles ; 9(1): 1769373, 2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-33144925

RESUMO

Evidence has been accumulating to indicate that extracellular vesicles (EVs), including exosomes, released by cancer cells can foster tumour progression. The molecular chaperones - CDC37, HSP90α and HSP90ß play key roles in cancer progression including epithelial-mesenchymal transition (EMT), although their contribution to EVs-mediated cell-cell communication in tumour microenvironment has not been thoroughly examined. Here we show that triple depletion of the chaperone trio attenuates numerous cancer malignancy events exerted through EV release. Metastatic oral cancer-derived EVs (MEV) were enriched with HSP90α HSP90ß and cancer-initiating cell marker CD326/EpCAM. Depletion of these chaperones individually induced compensatory increases in the other chaperones, whereas triple siRNA targeting of these molecules markedly diminished the levels of the chaperone trio and attenuated EMT. MEV were potent agents in initiating EMT in normal epithelial cells, a process that was attenuated by the triple chaperone depletion. The migration, invasion, and in vitro tumour initiation of oral cancer cells were significantly promoted by MEV, while triple depletion of CDC37/HSP90α/ß reversed these MEV-driven malignancy events. In metastatic oral cancer patient-derived tumours, HSP90ß was significantly accumulated in infiltrating tumour-associated macrophages (TAM) as compared to lower grade oral cancer cases. HSP90-enriched MEV-induced TAM polarization to an M2 phenotype, a transition known to support cancer progression, whereas the triple chaperone depletion attenuated this effect. Mechanistically, the triple chaperone depletion in metastatic oral cancer cells effectively reduced MEV transmission into macrophages. Hence, siRNA-mediated knockdown of the chaperone trio (CDC37/HSP90α/HSP90ß) could potentially be a novel therapeutic strategy to attenuate several EV-driven malignancy events in the tumour microenvironment. ABBREVIATIONS: CDC37: cell division control 37; EMT: epithelial-mesenchymal transmission; EV: extracellular vesicles; HNSCC: head and neck squamous cell carcinoma; HSP90: heat shock protein 90; TAM: tumour-associated macrophage.

11.
Cells ; 9(11)2020 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142674

RESUMO

Osteoclast differentiation and activity are controlled by two essential cytokines, macrophage colony-stimulating factor (M-CSF) and the receptor activator of nuclear factor-κB ligand (RANKL). Rab11A GTPase, belonging to Rab11 subfamily representing the largest branch of Ras superfamily of small GTPases, has been identified as one of the crucial regulators of cell surface receptor recycling. Nevertheless, the regulatory role of Rab11A in osteoclast differentiation has been completely unknown. In this study, we found that Rab11A was strongly upregulated at a late stage of osteoclast differentiation derived from bone marrow-derived macrophages (BMMs) or RAW-D murine osteoclast precursor cells. Rab11A silencing promoted osteoclast formation and significantly increased the surface levels of c-fms and receptor activator of nuclear factor-κB (RANK) while its overexpression attenuated osteoclast formation and the surface levels of c-fms and RANK. Using immunocytochemical staining for tracking Rab11A vesicular localization, we observed that Rab11A was localized in early and late endosomes, but not lysosomes. Intriguingly, Rab11A overexpression caused the enhancement of fluorescent intensity and size-based enlargement of early endosomes. Besides, Rab11A overexpression promoted lysosomal activity via elevating the endogenous levels of a specific lysosomal protein, LAMP1, and two key lysosomal enzymes, cathepsins B and D in osteoclasts. More importantly, inhibition of the lysosomal activity by chloroquine, we found that the endogenous levels of c-fms and RANK proteins were enhanced in osteoclasts. From these observations, we suggest a novel function of Rab11A as a negative regulator of osteoclastogenesis mainly through (i) abolishing the surface abundance of c-fms and RANK receptors, and (ii) upregulating lysosomal activity, subsequently augmenting the degradation of c-fms and RANK receptors, probably via the axis of early endosomes-late endosomes-lysosomes in osteoclasts.


Assuntos
Fator Estimulador de Colônias de Macrófagos/metabolismo , Osteogênese/genética , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Endossomos/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Células HEK293 , Humanos , Lisossomos/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/metabolismo , Proteólise , Ligante RANK/metabolismo
12.
Cells ; 9(3)2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204513

RESUMO

Tumor cells exhibit therapeutic stress resistance-associated secretory phenotype involving extracellular vesicles (EVs) such as oncosomes and heat shock proteins (HSPs). Such a secretory phenotype occurs in response to cell stress and cancer therapeutics. HSPs are stress-responsive molecular chaperones promoting proper protein folding, while also being released from cells with EVs as well as a soluble form known as alarmins. We have here investigated the secretory phenotype of castration-resistant prostate cancer (CRPC) cells using proteome analysis. We have also examined the roles of the key co-chaperone CDC37 in the release of EV proteins including CD9 and epithelial-to-mesenchymal transition (EMT), a key event in tumor progression. EVs derived from CRPC cells promoted EMT in normal prostate epithelial cells. Some HSP family members and their potential receptor CD91/LRP1 were enriched at high levels in CRPC cell-derived EVs among over 700 other protein types found by mass spectrometry. The small EVs (30-200 nm in size) were released even in a non-heated condition from the prostate cancer cells, whereas the EMT-coupled release of EVs (200-500 nm) and damaged membrane vesicles with associated HSP90α was increased after heat shock stress (HSS). GAPDH and lactate dehydrogenase, a marker of membrane leakage/damage, were also found in conditioned media upon HSS. During this stress response, the intracellular chaperone CDC37 was transcriptionally induced by heat shock factor 1 (HSF1), which activated the CDC37 core promoter, containing an interspecies conserved heat shock element. In contrast, knockdown of CDC37 decreased EMT-coupled release of CD9-containing vesicles. Triple siRNA targeting CDC37, HSP90α, and HSP90ß was required for efficient reduction of this chaperone trio and to reduce tumorigenicity of the CRPC cells in vivo. Taken together, we define "stressome" as cellular stress-induced all secretion products, including EVs (200-500 nm), membrane-damaged vesicles and remnants, and extracellular HSP90 and GAPDH. Our data also indicated that CDC37 is crucial for the release of vesicular proteins and tumor progression in prostate cancer.


Assuntos
Vesículas Extracelulares/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Estresse Fisiológico , Animais , Sequência de Bases , Carcinogênese/metabolismo , Carcinogênese/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Forma Celular , Chaperoninas/genética , Chaperoninas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Vesículas Extracelulares/ultraestrutura , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Humanos , L-Lactato Desidrogenase/metabolismo , Masculino , Camundongos SCID , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Proteoma/metabolismo
13.
Cancers (Basel) ; 12(2)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102440

RESUMO

Tumor growth, progression, and therapy resistance are crucial factors in the prognosis of cancer. The properties of three-dimensional (3D) tumor-like organoids (tumoroids) more closely resemble in vivo tumors compared to two-dimensionally cultured cells and are therefore effectively used for assays and drug screening. We here established a repurposed drug for novel anticancer research and therapeutics using a 3D tumoroid-based screening system. We screened six pharmacologically active compounds by using an original tumoroid-based multiplex phenotypic screening system with a matrix metalloproteinase 9 (MMP9) promoter-driven fluorescence reporter for the evaluation of both tumoroid formation and progression. The antiparkinson drug benztropine was the most effective compound uncovered by the screen. Benztropine significantly inhibited in vitro tumoroid formation, cancer cell survival, and MMP9 promoter activity. Benztropine also reduced the activity of oncogenic signaling transducers and trans-activators for MMP9, including STAT3, NF-κB, and ß-catenin, and the properties of cancer stem cells/cancer-initiating cells. Benztropine and GBR-12935 directly targeted the dopamine transporter DAT/SLC6A3, whose genetic alterations such as amplification were correlated with poor prognosis for cancer patients. Benztropine also inhibited the tumor growth, circulating tumor cell (CTC) number, and rate of metastasis in a tumor allograft model in mice. In conclusion, we propose the repurposing of benztropine for anticancer research and therapeutics that can suppress tumor progression, CTC, and metastasis of aggressive cancers by reducing key pro-tumorigenic factors.

14.
Cancers (Basel) ; 11(6)2019 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-31181782

RESUMO

Cell division control 37 (CDC37) increases the stability of heat shock protein 90 (HSP90) client proteins and is thus essential for numerous intracellular oncogenic signaling pathways, playing a key role in prostate oncogenesis. Notably, elevated expression of CDC37 was found in prostate cancer cells, although the regulatory mechanisms through which CDC37 expression becomes increased are unknown. Here we show both positive and negative regulation of CDC37 gene transcription by two members of the SREZBP-CTfin51-AW1-Number 18 cDNA (SCAN) transcription factor family-MZF1 and SCAND1, respectively. Consensus DNA-binding motifs for myeloid zinc finger 1 (MZF1/ZSCAN6) were abundant in the CDC37 promoter region. MZF1 became bound to these regulatory sites and trans-activated the CDC37 gene whereas MZF1 depletion decreased CDC37 transcription and reduced the tumorigenesis of prostate cancer cells. On the other hand, SCAND1, a zinc fingerless SCAN box protein that potentially inhibits MZF1, accumulated at MZF1-binding sites in the CDC37 gene, negatively regulated the CDC37 gene and inhibited tumorigenesis. SCAND1 was abundantly expressed in normal prostate cells but was reduced in prostate cancer cells, suggesting a potential tumor suppressor role of SCAND1 in prostate cancer. These findings indicate that CDC37, a crucial protein in prostate cancer progression, is regulated reciprocally by MZF1 and SCAND1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...